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Abstract
Background  Accurate intraoperative identification of scar tissue is essential for preventing bile duct injury during laparo-
scopic cholecystectomy (LC), especially under visually impaired conditions caused by bleeding. This study aimed to develop 
an artificial intelligence (AI)-based framework to enhance scar region prediction in such challenging surgical environments.
Methods  A hybrid approach was proposed, combining Cycle-Consistent Generative Adversarial Network-based image 
translation with uncertainty-aware fusion. Bleeding-contaminated laparoscopic images were translated into pseudo non-
bleeding representations using unpaired domain adaptation. Segmentation results obtained from the original and translated 
images were then fused based on pixel-wise entropy to improve robustness.
Results  The system was evaluated using 99 representative images from 20 surgical patients. Compared with conventional 
segmentation methods, the proposed framework significantly improved Dice coefficients across all three board-certified 
endoscopic surgeons who served as expert annotators, with all improvements demonstrating significance (P < 0.001). Subjec-
tive evaluations by the same surgeons confirmed high clinical utility, particularly in scar visibility and boundary delineation. 
The framework achieved near real-time inference speed (0.06 s per frame on an RTX A5000 GPU).
Conclusion  This AI-assisted framework improved the accuracy and robustness of scar tissue detection during LC, even in 
bleeding-compromised fields. Its real-time capability and strong clinical validation indicate substantial potential for intra-
operative application and enhancement of surgical safety.

Keywords  Artificial intelligence · Intraoperative bleeding · Intraoperative image enhancement · Laparoscopic 
cholecystectomy · Scar tissue identification · Real-time systems

Laparoscopic cholecystectomy (LC) is the most commonly 
performed procedure for the treatment of acute cholecysti-
tis (AC) and cholecystolithiasis [1]. However, in patients 
with severe inflammation, fibrosis, and scarring (particularly 
within Calot’s triangle), the procedure becomes technically 
challenging and is associated with a significantly increased 
risk of bile duct injury (BDI) [2, 3]. In such cases, precise 
intraoperative identification of scarring tissue is essential to 

guide dissection planes and prevent complications, includ-
ing conversion to open surgery or the need for bailout pro-
cedures [4].

Achieving the critical view of safety (CVS) is a widely 
accepted standard for safe LC and is essential for prevent-
ing BDI [5]. The CVS requires clear identification of the 
cystic duct and artery following complete dissection of 
Calot’s triangle, as well as the separation of the gallblad-
der from the liver bed [6]. However, in patients with severe 
inflammation or fibrosis, anatomical landmarks are often 
obscured, making the establishment of CVS challenging. A 
recent study reported that up to 15% of laparoscopic chol-
ecystectomies fail to achieve CVS due to dense adhesions or 
scarring, which significantly increases the risk of BDI and 
necessitates alternative strategies such as the “fundus-first” 
approach or subtotal cholecystectomy [4, 7]. In such set-
tings, reliable identification of fibrotic and scarred regions 
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is crucial to guide safe dissection and prevent intraoperative 
complications.

Recent advances in artificial intelligence (AI) have ena-
bled real-time intraoperative image analysis, including ana-
tomical landmark recognition and surgical phase detection 
[8–11]. In LC, AI-based segmentation models have been 
applied to enhance the visualization of critical structures and 
guide safe dissection [12–14]. These approaches primarily 
focus on identifying and evaluating structures suitable for 
dissection. However, in patients with high-difficulty presen-
tations, inflammation, scarring, and fibrosis resulting from 
chronic or past inflammatory episodes can obscure anatomi-
cal structures, thereby complicating surgical navigation. In 
such cases, information indicating “where to avoid dissect-
ing” is often more directly relevant to surgical safety than 
information indicating “where to dissect.” Building on this 
concept, our previous study by Orimoto et al. demonstrated 
the potential of a fibrosis prediction model that visualizes 
scarred regions using expert-annotated laparoscopic images 
[15]. Although promising, the model’s performance was 
substantially reduced in bleeding-contaminated scenes—a 
common intraoperative challenge—where occlusion and 
color distortion hinder human and AI recognition. In clini-
cal practice, intraoperative bleeding poses a serious risk by 
obscuring anatomical details at precisely the moment when 
accurate recognition is most critical [16]. The present study 
addresses this limitation by implementing an AI-assisted 
image enhancement strategy specifically tailored for chal-
lenging intraoperative environments. The AI targets were 
limited to scarred regions formed by chronic inflammation 
or previous inflammatory episodes. In this context, scar 
refers to tissue alterations caused by advanced inflamma-
tion that render dissection difficult [17], often suggesting 
challenges in achieving the CVS and in maintaining dissec-
tion along a safe anatomical plane [18]. Although fibrosis 
can be considered a precursor to scarring, scarred regions in 
this study are defined as those with distinct morphological 
features—such as whitish discoloration, surface irregularity, 
or tissue retraction—that are visually discernible intraop-
eratively and directly relevant to surgical decision-making. 
These intraoperative definitions are conceptually distinct 
from histopathological confirmation, which refers to micro-
scopic structural changes observed in resected specimens.

Instead of attempting direct detection of scarred regions 
under compromised visibility, a generative approach was 
employed to improve the visual clarity of surgical scenes 
affected by bleeding [19]. Specifically, cycle-consistent gen-
erative adversarial network (CycleGAN)-based image trans-
lation was used to convert laparoscopic images impacted 
by intraoperative bleeding into pseudo non-bleeding repre-
sentations [20, 21]. These transformed images were subse-
quently processed using a pretrained scar prediction model. 
To integrate predictions from both the original and pseudo 

non-bleeding images, an uncertainty-aware fusion strategy 
was introduced, in which outputs are adaptively weighted 
based on the confidence (entropy) of each prediction. This 
mechanism enhances the visibility and accuracy of scar 
detection, even under visually compromised conditions 
caused by bleeding [22, 23]. The final results are overlaid 
onto the original image, providing surgeons with real-time 
guidance that is both familiar and clinically actionable.

The system was evaluated using quantitative segmen-
tation metrics (e.g., the Dice coefficient) and qualitative 
assessment by board-certified surgeons. The results dem-
onstrate that this approach improves the interpretability of 
scarring regions under challenging surgical conditions and 
supports safe dissection in patients with high-risk LC. This 
technique may serve as a practical intraoperative support 
tool, particularly for general surgeons managing AC with 
poor visibility.

Materials and methods

A schematic workflow diagram (Fig. 1) is presented to illus-
trate the overall process, from algorithm development to 
final analysis. The numbered phases in the diagram outline 
the sequential flow of the study and are referenced where 
relevant in the following subsections.

Study design, ethics, and overall workflow

A retrospective analysis was conducted using a previously 
published dataset compiled by Orimoto et al. [15], which 
included LC procedures performed at Oita University Hos-
pital. The original study aimed to train and validate a scar 
prediction model using expert-annotated surgical videos. 
The present study builds upon this foundation by implement-
ing advanced image enhancement and fusion strategies to 
address performance limitations observed under bleeding 
conditions.

All data were fully anonymized prior to analysis. The 
study was approved by the Institutional Review Boards of 
Oita University Faculty of Medicine (IRB no. 2032) and 
Fukuoka Institute of Technology (IRB no. hm02-22). The 
study was conducted in accordance with the principles of 
the Declaration of Helsinki and its subsequent amendments.

Clinical dataset preparation

The training dataset consisted of patients with LC treated 
at Oita University Hospital, in whom the presence or 
absence of scarring could be corroborated by pathological 
data. These patients were organized sequentially by case 
ID (SC000–SC020). In this study, the term “scar region” 
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refers to intraoperative areas of scarring as defined in the 
Introduction.

From these selected patients, expert-annotated surgical 
videos focusing on the region surrounding Calot’s triangle 
were used to generate a training dataset for model develop-
ment. A total of 2119 frames were extracted, with approxi-
mately 80–100 frames obtained from each patient. To reduce 
redundancy caused by the high similarity of consecutive 
frames in laparoscopic videos, frames were initially sam-
pled at intervals of approximately 30 frames. Among these 
candidates, only frames with no or minimal motion blur 
were retained. For additional clinical evaluation, a separate 
set of 100 representative images was independently selected 
from 20 patients with LC (SC021–SC040) obtained from 
an external institution. Pathological confirmation was not 
available for these patients nor were detailed data regarding 
surgical settings, patient demographics, or imaging devices. 
Instead, patients were selected in whom scarred areas could 
be clearly identified by consensus between two board-certi-
fied surgeons (certified by the Japan Society for Endoscopic 
Surgery). These test data were specifically used for external 
evaluation, enabling assessment of the clinical utility of the 
proposed framework through both objective evaluation using 
the Dice coefficient and subjective evaluation based on video 
review.

As a statistical measure for both the training and test data-
sets, the scar area ratio was calculated for each patient. The 

corresponding distributions are presented as box plots in 
Figs. 2 (training dataset) and 3 (test dataset). In each box 
plot, the central line represents the median, whereas the 
green triangle denotes the mean. The whiskers extend to 1.5 
times the interquartile range, and circles indicate outliers. 
The results revealed considerable variability: in the training 
dataset (21 patients), the mean scar area ratio was 10.3% 
with a standard deviation of 7.4% (range, 0–52%); in the 
test dataset (20 patients), the mean was 22.3% with a stand-
ard deviation of 10.9% (range, 3.5–56.5%). These findings 
indicate substantial variability in the presence and extent 
of scarring across patients and frames, suggesting that the 
model is unlikely to rely on a single pattern during training.

AI model development and training

The proposed workflow integrates three key AI components. 
First, a CycleGAN model translates bleeding-contaminated 
laparoscopic images into pseudo non-bleeding representa-
tions. Second, scar regions are predicted using the pretrained 
HyperSeg model [24]. Finally, predictions from both the 
original and translated images are merged through an uncer-
tainty-aware fusion process, which employs entropy-based 
confidence weighting.

CycleGANs enable unpaired image-to-image transla-
tion, a feature particularly advantageous in surgical contexts 
where identical pre- and post-bleeding views are unavailable. 

Fig. 1   Overview of the workflow summarizing the process from algorithm development to final analysis, comprising four sequential phases: (1) 
dataset preparation, (2) AI model construction and training, (3) inference workflow, and (4) evaluation
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The model was trained on 2000 laparoscopic images auto-
matically selected from 21 patients with LC obtained from 
an external institution. These images were used exclusively 
for selecting bleeding and non-bleeding frames and were not 
included in the test dataset of the present study. Frame selec-
tion was performed using a Vision Transformer (ViT)-based 
binary classifier that discriminated between bleeding and 

non-bleeding frames [25]. Model training employed adver-
sarial loss, cycle-consistency loss, and perceptual loss [26] 
to preserve fine anatomical structures.

Scar region prediction was performed using the HyperSeg 
model, a real-time patch-wise hypernetwork architecture that 
demonstrates robust generalization across domains. To inte-
grate predictions from the original and translated images, an 

Fig. 2   Distribution of scar area ratio by case in the training dataset

Fig. 3   Distribution of scar area ratio by case in the test dataset
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uncertainty-aware fusion strategy was implemented. Entropy 
maps were computed for each prediction and subsequently 
used as confidence-based weights during pixel-wise fusion. 
Although Bayesian models were not directly employed, the 
uncertainty-aware fusion strategy was conceptually inspired 
by approaches such as Monte Carlo Dropout [27] and proba-
bilistic segmentation methods, including the Probabilistic 
U-Net [28], both of which are designed to enhance robust-
ness under conditions of uncertainty.

Inference workflow and output generation

During inference, both the original and CycleGAN-trans-
lated images were processed by the HyperSeg model to 
generate scar probability maps (SPMs), denoted as pA(x) 
and pB(x), respectively. The raw network outputs were nor-
malized using the softmax function, converting logits into 
probabilities ranging from 0 to 1, with the sum across classes 
equal to 1. These probability maps were subsequently com-
bined using an entropy-based, uncertainty-aware fusion 
strategy to generate a final prediction map, thereby enhanc-
ing scar visualization even in bleeding-compromised areas.

Let p(x) denote the predicted probability map obtained 
after applying the HyperSeg model to an image. Pixel-wise 
uncertainties, uA(x) and uB(x), were defined as the entropies 
of the corresponding probability maps (Eq. 1). The associ-
ated confidence maps were calculated as described in Eq. 2. 
The fused probability map, pfused (x), was generated through 
confidence-weighted integration (Eq. 3). A final binary mask 
was produced by applying a confidence threshold q to the 
fused probability map (Eq. 4), with q = 0.37 determined 

empirically from preliminary validation. Higher values of 
q yielded more conservative predictions by excluding low-
confidence areas, whereas lower q values increased detec-
tions at the risk of introducing false positives.

Figure 4 presents illustrative examples of the original 
image (B), the translated pseudo non-bleeding image (D), 
the corresponding probability maps (B_SPM and D_SPM), 
and the fused scar prediction results. The scar probability 
maps (SPMs) represent model-generated scores for scar-
ring produced by HyperSeg rather than direct probabilities. 
Low-score regions (cool colors) surrounded by high-score 
regions (warm colors) may still be inferred as scarring fol-
lowing uncertainty-aware fusion. For clarity, the boundaries 
and overall visibility of the scarred regions inferred by the 
proposed method were enhanced to facilitate interpretation.

In this study, inference was performed on all incoming 
endoscopic video frames, including those affected by motion 
blur, defocus, smoke, or blood occlusion. Such degradations 

(1)u(x) = −(p(x) log p(x)) + (1 − p(x)) log(1 − p(x)))

(2)w(x) =
1

u(x) + �

(3)pfused(x) =
wA(x) ⋅ pA(x) + wB(x) ⋅ pB(x)

wA(x) + wB(x)

(4)M(x) =

{

1 if pfused(x) > 𝜃

0 otherwise

Fig. 4   Overview of the proposed AI-assisted workflow for scar region visualization under intraoperative bleeding conditions. AI artificial intel-
ligence



	 Surgical Endoscopy

were assumed to be temporary rather than persistent. Although 
the model continuously processed frames in real time, the 
instructional information generated was intended to be refer-
enced primarily when the surgical field was stable. Accord-
ingly, the short-term presence of degraded frames was con-
sidered to exert only a limited impact on the accuracy and 
reliability of the guidance provided.

Evaluation strategy

Objective evaluation was performed using the test dataset, 
which consisted of external-institution images independently 
annotated by three experienced surgeons. All annotators were 
board-certified endoscopic surgeons specializing in hepatobil-
iary-pancreatic surgery, with 18, 22, and 30 years of clinical 
practice, respectively. For ground-truth creation, the test data-
set originally comprised 100 frames; however, one corrupted 
frame (along with its annotation) was excluded, leaving 99 
frames for analysis. Scar regions were annotated independently 
by each surgeon to minimize potential bias.

Segmentation performance was assessed by comparing the 
predicted scar regions with these ground-truth annotations 
using the Dice coefficient, as defined in Eqs. (5)–(7). In this 
context, TP denotes true positives, FP denotes false positives, 
TN denotes true negatives, and FN denotes false negatives.

(5)Dice =
2 × Precision × Recall

Precision + Recall

(6)Precision =
TP

TP + FP

Comparisons were made between conventional predic-
tions and the proposed fused predictions. Statistical signifi-
cance was assessed using the Wilcoxon signed-rank test, 
with a P value of < 0.05 considered significant. To evaluate 
the influence of bleeding severity, frames were stratified into 
high-bleeding (probability > 0.5) and low-bleeding (prob-
ability ≤ 0.5) groups according to the ViT-based classifier. 
Separate Wilcoxon tests were conducted for each subgroup.

Subjective evaluation was performed by the same three 
surgeons who annotated the test dataset. Each surgeon was 
presented with paired video sequences containing original 
predictions (Images A and B) and fused predictions (Image 
E). A 5-point Likert scale was used to assess overall visibil-
ity, boundary delineation, and clinical usability.

Results

Visual example of improvement

Figure 5 illustrates a representative patient in whom intra-
operative bleeding significantly reduced the visibility of 
scarred tissue within Calot’s triangle. In this example, con-
ventional AI-based segmentation (B) failed to detect a sub-
stantial portion of the scarred area due to visual obstruction.

By contrast, the CycleGAN-translated pseudo non-
bleeding image (C) improved structural clarity, enabling 
the segmentation model to more accurately identify scarred 
features (D). The final uncertainty-aware fusion output (E) 
effectively combined predictions from both the original and 

(7)Recall =
TP

TP + FN

Fig. 5   Representative example demonstrating improvement in scar-
ring detection using the proposed method. A Original laparoscopic 
image with bleeding contamination. B Prediction results from con-
ventional segmentation AI applied to Image A, with correspond-
ing scar probability map (B_SPM). C CycleGAN-translated pseudo 
non-bleeding image. D Prediction results from the AI segmentation 

applied to the translated image, with the corresponding scar probabil-
ity map (D_SPM). E Final fused result, highlighting scarred regions 
in blue and overlaid with yellow contours from the ground-truth 
annotation. AI artificial intelligence, CycleGAN cycle-consistent gen-
erative adversarial network, SPM scar probability map
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translated images, yielding results that closely approximated 
the expert-annotated ground truth. This case highlights the 
potential of the proposed system to support safer dissection 
decisions under bleeding conditions that are typically chal-
lenging for both surgeons and AI models. The color scale in 
the probability maps (B_SPM, D_SPM) represents model-
assigned scores for scarring generated by HyperSeg and 
does not directly correspond to the final fused probabilities. 
Owing to the non-linear integration in the uncertainty-aware 
fusion process, regions in B_SPM and D_SPM with low 
scores (cool colors) that are adjacent to or surrounded by 
high-score regions (warm colors) may be elevated in value 
and consequently inferred as scarring in the fused result.

The proposed system achieved an average processing time 
of 0.06 s per frame on an NVIDIA RTX A5000 GPU. This 
measurement encompassed the entire workflow, including 
CycleGAN-based image translation (conversion of bleeding 
images to non-bleeding), segmentation of scarred regions, 
uncertainty-aware fusion of multiple inference results, and 
real-time overlay display onto the endoscopic video. These 
results demonstrate that the system operates at a speed suit-
able for real-time intraoperative use, without disrupting the 
surgical workflow.

Quantitative evaluation

To quantitatively assess the clinical utility of the proposed 
method, segmentation performance was compared before 
and after applying the uncertainty-aware fusion strategy 
across 99 evaluation frames independently annotated by 
three board-certified endoscopic surgeons who served as 

evaluators. The Dice coefficient was used as the primary 
metric, and statistical significance was determined using the 
Wilcoxon signed-rank test.

Evaluator 1: The mean Dice coefficient improved from 
0.643 (95% confidence interval (CI) 0.603–0.683) to 
0.792 (95% CI 0.754–0.830), with a median increase of 
0.121 (95% CI 0.103–0.142), P = 8.15 × 10⁻13, Cohen’s 
d = 0.85.
Evaluator 2: The mean Dice coefficient improved from 
0.626 (95% CI 0.584–0.668) to 0.721 (95% CI 0.685–
0.757), with a median increase of 0.066 (95% CI 0.032–
0.104), P = 1.13 × 10−8, Cohen’s d = 0.62.
Evaluator 3: The mean Dice coefficient improved from 
0.704 (95% CI 0.663–0.745) to 0.874 (95% CI 0.852–
0.896), with a median increase of 0.117 (95% CI 0.096–
0.140), P = 9.66 × 10⁻16, Cohen’s d = 0.92.

These results demonstrate that integrating CycleGAN-
based image translation with uncertainty-aware fusion sig-
nificantly improves the accuracy of scarred region detec-
tion in challenging intraoperative scenes. Figure 6 presents 
boxplots comparing the Dice scores before and after fusion 
across all evaluators, with Wilcoxon signed-rank tests con-
firming significant improvements (P < 0.001).

To further examine the effect of bleeding severity, the 
evaluation frames were stratified into high-bleeding (pre-
dicted probability > 0.5) and low-bleeding (≤ 0.5) subgroups 
using a ViT-based image classifier. Within both subgroups, 
the proposed method consistently outperformed conventional 
segmentation, as summarized in Table 1. Improvements 

Fig. 6   Boxplot comparison of Dice scores between conventional predictions (Image B) and the proposed method (Image E) across four external 
evaluator. Asterisks denote significant improvements (Wilcoxon signed-rank test, P < 0.001 for all comparisons)
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were significant across all evaluators regardless of bleeding 
intensity (P < 0.001), underscoring the method’s robustness 
under both clean and visually compromised conditions.

These findings highlight the clinical applicability of the 
proposed approach in real-world surgical settings, particu-
larly in patients with AC where bleeding is frequent and 
visibility is impaired. By maintaining high performance 
even under adverse visual conditions, the system may assist 
general surgeons in making safer intraoperative decisions.

No significant interaction was observed between bleed-
ing severity and the magnitude of improvement, suggesting 
that the method remains stable even under bleeding-induced 
image quality degradation.

Subjective evaluation by expert surgeons

To further assess the perceived utility of the proposed 
method, three expert laparoscopic surgeons independently 
evaluated 20 surgical videos from the test dataset using a 
5-point Likert scale (1 = strongly disagree to 5 = strongly 
agree). The evaluation items addressed improvements in 

scar region detection, mitigation of bleeding-related visual 
obstruction, clinical reliability of the results, and the useful-
ness of the output as intraoperative support. Additionally, a 
binary-choice item was included to determine whether the 
conventional or proposed method was more helpful for scar 
region recognition.

As presented in Table 2, all items except Question 4 
achieved an average score of ≥ 4.1, reflecting a generally 
favorable impression of the proposed method. Notably, the 
positive response rate (defined as the proportion of ratings of 
4 or 5) exceeded 75% for four of the five Likert scale items. 
By contrast, concern regarding oversegmentation (Question 
4) received a relatively lower score of 3.40 ± 0.98 and a posi-
tive response rate of 61.7%, indicating more mixed evalua-
tions for this aspect. For the binary-choice item (Question 6), 
the proposed method was preferred in 91.7% of the patients, 
demonstrating a clear advantage over the conventional 
method as a visual support tool for scar region identification.

Collectively, these findings support the clinical applica-
bility of the proposed approach and highlight its potential 
to enhance intraoperative decision-making, particularly in 

Table 1   Subgroup analysis of Dice coefficient improvements stratified by bleeding severity and external evaluator

Table 2   Summary of subjective evaluation results
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bleeding-prone surgical scenarios where conventional meth-
ods frequently underperform.

Discussion

This study demonstrated that our AI-assisted workflow, 
which integrates CycleGAN-based image translation with 
uncertainty-aware fusion, significantly enhances the detec-
tion of scarred tissue during LC, particularly under bleeding-
compromised conditions. In scar probability maps (SPMs) 
generated by HyperSeg, boundary regions frequently exhib-
ited higher probability values than the more homogeneous 
central areas. This pattern reflects the patch-wise predic-
tion mechanism of HyperSeg, which prioritizes local tex-
ture changes and boundary features. As a result, central scar 
regions often appeared with relatively low scores. However, 
the uncertainty-aware fusion process compensated for these 
discrepancies, yielding a more coherent and consistent rep-
resentation of the scarred tissue. Consequently, the proposed 
method achieved higher Dice coefficients compared with 
conventional segmentation across all evaluators and main-
tained robust performance under both high- and low-bleed-
ing conditions. From a clinical perspective, the model design 
did not explicitly incorporate the anatomical relationship 
with Calot’s triangle. Nevertheless, this landmark is crucial 
for safe dissection, and the proposed system may assist by 
highlighting scarred regions adjacent to the cystic duct and 
artery, which are often obscured by intraoperative bleeding.

Intraoperative scarring within Calot’s triangle is a major 
risk factor for BDI, particularly in patients with acute or 
recurrent cholecystitis. Accurate recognition of scarring is 
therefore critical for planning bailout procedures such as 
subtotal cholecystectomy or conversion to open surgery [18]. 
Intraoperative bleeding often obscures the operative field, 
making reliable recognition difficult for both surgeons and 
AI-based systems. The proposed method addresses this chal-
lenge by generating pseudo non-bleeding representations to 
restore visibility, enabling more dependable identification of 
scarred areas that might otherwise be overlooked.

A key innovation of this approach lies in the use of 
unpaired image-to-image translation via CycleGAN, which 
enables the generation of clean images without requiring 
aligned image pairs. The incorporation of perceptual loss 
further preserved anatomical fidelity, ensuring that the trans-
lated images retained clinical interpretability. The subse-
quent uncertainty-aware fusion adaptively weighted outputs 
according to pixel-wise entropy, enhancing consistency and 
robustness under variable intraoperative conditions.

Effectiveness was demonstrated not only through objec-
tive performance metrics but also through subjective 
evaluation by expert surgeons. High Likert scale ratings 
for scar visibility and clinical usefulness suggest that the 

system can provide actionable intraoperative insights. All 
evaluators showed significant improvements in Dice coef-
ficients (P < 0.001), with effect sizes ranging from moderate 
(d = 0.62) to large (d = 0.92). These differences may reflect 
variations in evaluation criteria, subjective judgment tenden-
cies, or the relative difficulty of the evaluated patients. A 
tendency toward broader segmentation in some contexts may 
also have influenced the results, highlighting the inherent 
trade-off between sensitivity and specificity in safety–critical 
applications. Incorporating active learning or expert-in-the-
loop corrections could further refine predictions and improve 
alignment with surgical intuition.

Although novice surgeons were not included in this evalu-
ation, real-time visualization of scarred regions may enhance 
situational awareness and decision-making, potentially 
accelerating skill acquisition. However, incorrect AI indica-
tions could misguide surgical decisions. False positives may 
lead to the overestimation of anatomical changes, whereas 
false negatives could result in missed critical findings. These 
risks can be mitigated by standard intraoperative confirma-
tion using irrigation, palpation with forceps, and integration 
with preoperative imaging. Such measures ensure that AI 
output complements rather than replaces surgical judgment.

Compared with prior studies that applied GAN-based 
methods for general feature enhancement or domain adapta-
tion under smoke or lighting variations [19–21], the present 
study specifically addresses scarring—a clinically critical 
finding that directly influences intraoperative decision-mak-
ing and patient safety. To our knowledge, this is among the 
first studies to combine generative translation with entropy-
based fusion for this purpose, representing a meaningful 
advancement in surgical AI.

This study has some limitations. First, although the data-
set was derived from real surgical procedures, its size was 
modest and limited to a single institution. Validation using 
multi-institutional and multi-device datasets will be essential 
to ensure robustness across diverse surgical environments. 
Second, subjective evaluation was conducted by only three 
expert surgeons; expanding the reviewer panel would help 
capture inter-rater variability and strengthen usability vali-
dation. Third, although the system achieved real-time infer-
ence (approximately 0.06 s per frame on current GPUs), 
integration into existing surgical platforms will require addi-
tional engineering and usability testing. In clinical practice, 
overlay displays under compromised visibility may obscure 
important visual cues, such as microbleeding. To address 
this concern, an operational setup is envisioned in which AI-
generated instructional information is presented on a second-
ary monitor rather than overlaid on the primary endoscopic 
view. This configuration would allow surgeons to maintain 
direct visualization of the live operative field while consult-
ing scarred-area information as needed. The primary role of 
the AI system is to provide alerts regarding the presence of 
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scarring within the surgical field, prompting reconsideration 
of dissection strategies irrespective of the surgeon’s level of 
experience.

In the context of LC, three representative intraoperative 
scenarios are envisioned for the proposed system: (1) iden-
tification of scarred areas temporarily obscured by bleed-
ing, enabling prompt recognition of potential hazards once 
hemostasis is restored; (2) differentiation between scarred 
and non-scarred tissue in severely inflamed operative fields, 
thereby facilitating safer dissection planes; and (3) confir-
mation of residual scarred areas after total or subtotal chol-
ecystectomy, reducing the risk of inadvertent bile duct or 
vascular injury.

In the future, this framework may be extended beyond 
scarring detection to include visualization of other critical 
intraoperative findings, such as vascular structures, nerve 
pathways, and oncologic margins. Incorporating real-time 
feedback loops between the AI system and surgeons could 
foster adaptive learning and enhance intraoperative trust. For 
clinical implementation, careful consideration of workflow 
integration, as well as regulatory and ethical requirements, 
will be essential to ensure safe and effective deployment.

In summary, a clinically meaningful AI framework was 
developed and validated to enhance intraoperative detection 
of scarring, even in bleeding-compromised fields. Through 
the integration of generative translation and uncertainty-
aware fusion, the proposed method addresses a practical 
unmet need in LC and demonstrates potential for broader 
incorporation into intraoperative guidance systems aimed 
at improving surgical safety.

Conclusion

This study introduced a hybrid AI framework designed 
to support the recognition of scar tissue during LC under 
bleeding-contaminated conditions. By integrating unpaired 
image-to-image translation using CycleGAN with an 
uncertainty-aware fusion strategy, the system enhanced scar 
detection performance while preserving anatomical inter-
pretability. Quantitative analyses demonstrated consistent 
improvements across all evaluators, and subjective assess-
ments confirmed the clinical relevance and usability of the 
approach.

The proposed framework addresses a critical gap in sur-
gical image analysis, namely, the reliable identification of 
scar tissue under compromised visibility, and demonstrates 
feasibility for real-time intraoperative support. With further 
validation and seamless integration into surgical workflows, 
this approach has the potential to strengthen operative deci-
sion-making, reduce the risk of BDI, and improve outcomes 
in complex cholecystectomy cases.
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